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Abstract. Random intersection graphs (RIGs) are an important random struc-
ture with algorithmic applications in social networks, epidemic networks, blog
readership, and wireless sensor networks. RIGs can be interpreted as a model for
large randomly formed non-metric data sets. We analyze the component evolution
in general RIGs, giving conditions on the existence and uniqueness of the giant
component. Our techniques generalize existing methods for analysis of compo-
nent evolution: we analyze survival and extinction properties of a dependent, in-
homogeneous Galton-Watson branching process on general RIGs. Our analysis
relies on bounding the branching processes and inherits the fundamental concepts
of the study of component evolution in Erdős-Rényi graphs. The major challenge
comes from the underlying structure of RIGs, which involves both a set of nodes
and a set of attributes, with different probabilities associated with each attribute.

Keywords: General random intersection graphs, random graphs, branching pro-
cesses, giant component, stochastic processes in relation with random discrete
structures.

1 Introduction

Bipartite graphs, consisting of two sets of nodes with edges only connecting nodes
in opposite sets, are a natural representation for many algorithmic problems on net-
works. Social networks can often be cast as bipartite graphs built from sets of indi-
viduals connected to sets of attributes, such as membership of a club or organization,
work colleagues, or fans of the same sports team. A well-known example is a collabo-
ration graph, where the two sets might be scientists and research papers, or actors and
movies [27, 18]. Simulations of epidemic spread in human populations are often per-
formed on networks constructed from bipartite graphs of people and the locations they
visit during a typical day [11]. Bipartite structure is hardly limited to social networks.
The relation between nodes and keys in secure wireless communication, for examples,
forms a bipartite network [6]. Factor graphs have become a standard representation for



2 Milan Bradonjić, Aric Hagberg, Nicolas W. Hengartner, Allon G. Percus

constraint satisfaction problems such as k-SAT and graph coloring. In general, bipartite
graphs are well suited to problems of classifying objects, where each object has a set
of properties [10]. However, modeling such networks remains a challenge. The well-
studied Erdős-Rényi model, Gn,p, successfully used for average-case analysis of algo-
rithm performance, does not satisfactorily represent many randomly formed social or
collaboration networks. Gn,p does not capture the typical scale-free degree distribution
of many real-world networks [3]. More realistic degree distributions can be achieved
by the configuration model [20] or expected degree model [7], but even those fail to
capture common properties of social networks such as the high number of triangles (or
cliques) and strong degree-degree correlation [19, 1].

A straightforward way of remedying these problems is to characterize each of the
bipartite sets separately. One step in this direction is an extension of the configuration
model that specifies degrees in both sets [14]. We study the related approach of random
intersection graphs (RIG), first introduced in [26, 16]. Any undirected graph can be
represented as an intersection graph [9]. The simplest version is the “uniform” RIG,
G(n,m, p), containing a set of n nodes and a set of m attributes, where any given
node-attribute pair contains an edge with a fixed probability p, independently of other
pairs. Two nodes in the graph are taken to be connected if and only if they are both
connected to at least one common element in the attribute set. In our work, we study
the more general RIG, G(n,m,p) [22, 21], where the node-attribute edge probabilities
are not given by a uniform value p but rather by a set p = {pw | w ∈ W}. A node is
attached to the attribute w, with probability pw.1 This general model has only recently
been developed and only a few results have been obtained, such as expander properties,
cover time, and the existence and efficient construction of large independent sets [22,
21, 23].

In this paper, we generalize results that have previously been obtained for the uni-
form RIG [4, 6], analyzing the evolution of components in general RIGs and obtaining
conditions for the existence and uniqueness of the giant component. Our main con-
tribution is a generalization of the branching process used for analyzing Gn,p [2]. By
considering an auxiliary process that is stochastically equivalent, we bound the stopping
time for the branching process on general RIGs, yielding bounds on the sizes of graph
components. The major challenge comes from the underlying structure of RIGs, which
involves both the set of nodes and the set of attributes, as well as the set of different
probabilities p = {pw | w ∈W}. Our approach requires us to keep track of the history
of the branching process, which is directly dictated by this structure.

2 Model and previous work

In this paper, we will consider the general intersection graphG(n,m,p), introduced
in [22, 21], with a set of probabilities p = {pw | w ∈ W}, where pw ∈ (0, 1). We now
formally define the model.

Model. Given a set of nodes V = {1, 2, . . . , n}, attributes W = {1, 2, . . . ,m}, and
probabilities p = {pw | w ∈ W}, for all (v, w) ∈ V ×W , define the i.i.d. indicator

1 Note that the pw do not generally sum up to 1. Furthermore, we can eliminate the trivial cases
of pw = 0 and pw = 1, corresponding to the absence of attribute w and to a complete graph.
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random variables
Iv,w ∼ Bernoulli(pw). (1)

Every node v ∈ V is assigned a random set of attributes W (v) ⊆W

W (v) = {w ∈W | Iv,w = 1}. (2)

This is illustrated schemati-
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Fig. 1. Random intersection graph. V is set of nodes and
W is set of attributes. A particular attribute wi is associ-
ated with every node independently at random with proba-
bility pi.

cally in Fig. 1.
A set of edges E ∈ V ×

V is then defined, such that for
two different nodes vi, vj ∈ V ,
{vi, vj} ∈ E iff

|W (vi) ∩W (vj)| ≥ s (3)

for a given integer s ≥ 1. Thus,
two nodes are adjacent if and
only if they have at least s at-
tributes in common. One limi-
tation of our analysis is that for
simplicity, we fix s = 1.

Our model generalizes the
uniform modelG(n,m, p), stud-
ied in [4, 6], where all pw take
on the same value p. Different generalizations and special cases have been studied
in [13, 15, 17, 8].

To complete the picture of previous work, in [8] it was shown that when n = m, a
set of probabilities p = {pw | w ∈W} can be chosen to tune the degree and clustering
coefficient of the graph.

3 Mathematical preliminaries

In this paper, we analyze the component evolution of the general RIG structure. As we
have already mentioned, the major challenge comes from the underlying structure of
RIGs, which involves both a set of nodes and a set of attributes, as well as a set of
different probabilities p = {pw | w ∈W}.

Moreover, the edges in RIG are not independent. Hence, a RIG cannot be treated as
an Erdős-Rényi random graphGn,p̂, with the edge probability p̂ = 1−

∏
w∈W (1−p2w).

However, in [12], the authors provide the comparison among Gn,p̂ and G(n,m, p),
showing that for m = nα and α > 6, these two classes of graphs have asymptotically
the same properties. In [25], Rybarczyk has recently shown the equivalence of sharp
threshold functions among Gn,p̂ and G(n,m, p), when m ≥ n3. In this work, we do
not impose any constraints among n andm, and we develop methods for the analysis of
branching processes on RIGs, since the existing methods for the analysis of branching
processes on Gn,p do not apply.
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We now briefly state the edge dependence. Consider three distinct nodes vi, vj , vk
from V , and let “↔” denote adjacency, so that vi ↔ vj iff |W (vi) ∩ W (vj)| ≥ 1.
Conditional on the set W (vk), by the definition (2), the sets W (vi) ∩ W (vk) and
W (vj) ∩ W (vk) are mutually independent, which implies conditional independence
of the events {vi ↔ vk |W (vk)}, {vj ↔ vk |W (vk)}, that is,

P[vi ↔ vk, vj ↔ vk |W (vk)] = P[vi ↔ vk |W (vk)]P[vj ↔ vk |W (vk)]. (4)

However, the latter does not imply independence of the events {vi ↔ vk} and {vj ↔
vk} since in general

P[vi ↔ vk, vj ↔ vk] = E
[
P[vi ↔ vk, vj ↔ vk |W (vk)]

]
= E

[
P[vi ↔ vk |W (vk)]P[vj ↔ vk |W (vk)]

]
6= P[vi ↔ vk]P[vj ↔ vk]. (5)

Furthermore, the conditional pairwise independence (4) does not extend to three or
more nodes. Indeed, conditionally on the set W (vk), the sets W (vi)∩W (vj),W (vi)∩
W (vk), and W (vj) ∩W (vk) are not mutually independent, and hence neither are the
events {vi ↔ vj}, {vi ↔ vk}, and {vj ↔ vk}, that is,

P[vi ↔ vj , vi ↔ vk, vj ↔ vk |W (vk)] 6= P[vi ↔ vj |W (vk)]

×P[vi ↔ vk |W (vk)]P[vj ↔ vk |W (vk)].

4 Auxiliary process on general random intersection graphs

Our analysis for the emergence of a giant component is inspired by the process de-
scribed in [2], which measures the size of a component by counting the number of steps
until a breadth-first search terminates. The difficulty in using this approach to analyze
the evolution of the stochastic process defined by equations (1), (2), and (3) resides
in the fact that we need, at least in principle, to keep track of the temporal evolution
of the sets of nodes and attributes being explored. This results in a process that is not
Markovian.

Therefore, we instead construct an auxiliary process that is simpler to analyze but
whose stopping time is, in distribution, identical to that of the breadth-first search. The
process is algorithmically defined as follows.

Auxiliary Process. Start from an arbitrary node v0 ∈ V . Denote by Vt the cumu-
lative set of nodes visited by time t, which we initialize to V0 = {v0}. Denote the
cumulative set of all attributes [6] associated with the set Vt by

Wt =

t⋃
τ=0

W (vτ ). (6)

Now consider the set of nodes adjacent to Vt but not yet visited:{
v ∈ V \ Vt :W (v) ∩Wt 6= ∅

}
. (7)
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Following [2], we call this the set of alive nodes at time t. Unlike in [2], however, we
do not keep track of the actual list of alive nodes, but only the size of the set, which we
denote by the random variable

Yt =
∣∣∣{v ∈ V \ Vt :W (v) ∩Wt 6= ∅

}∣∣∣ ,
for t ≥ 1. We also define Y0 = |V0|, that is, Y0 = 1. The process evolves as follows:
for t ≥ 1, pick a node vt uniformly at random from the set V \ Vt−1 and update the set
of visited nodes Vt = Vt−1 ∪ {vt} = {v0, . . . , vt}. Then update the set of alive nodes
and Yt. The process terminates when Yt reaches 0.

To understand why this auxiliary process is useful, notice that due to the indepen-
dence of the random variables Iv,w, at step t every node in V \ Vt is equally likely to
belong to the set (7) of alive nodes. Consequently, picking the next node vt+1 uniformly
from V \Vt is the same random process as picking vt+1 uniformly from the set of alive
nodes (as in [2]), conditional on the history of the attribute sets uncovered up through
time t:

Ht = {W (v0),W (v1), . . . ,W (vt)}. (8)

In the latter process, the stopping time

T (v0) = inf{t ≥ 0 : Yt = 0} (9)

would simply be equal to |C(v0) − 1|, where |C(v0) is the size of the component
containing v0 [2].Thus in the auxiliary process, since it is stochastically equivalent,

T (v0)
d
= |C(v0)| − 1. (10)

4.1 Process description in terms of random variable Yt

Let us characterize the process {Yt}t≥0 in terms of the number Zt of newly discovered
neighbors of Vt:

Zt = Yt − Yt−1 + 1, (11)

where the term +1 reflects the fact that vt is discovered at time step t, but it is not
counted in Yt because it has been visited. For nodes that are neither visited nor alive, the
events of their becoming alive at time t are conditionally independent given the history
Ht, since each event involves a different subsets of the indicator random variables Iv,w.
W (vt) and Wt−1 are mutually independent, hence the conditional probability that such
a node u becomes alive at time t is

rt = P[u↔ vt, u 6↔ vt−1, u 6↔ vt−2, . . . , u 6↔ v0|Ht]
= P[W (u) ∩W (vt) 6= ∅,W (u) ∩Wt−1 = ∅|Ht]
= P[W (u) ∩W (vt) 6= ∅,W (u) ∩Wt−1 = ∅|W (vt),Wt−1]

= P[W (u) ∩W (vt) 6= ∅|W (vt)]P[W (u) ∩Wt−1 = ∅|Wt−1]

=
(
1−

∏
α∈W (vt)

(1− pα)
) ∏
β∈Wt−1

(1− pβ).
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The last expression can be rewritten as

rt =
∏

β∈Wt−1

qβ −
∏
α∈Wt

qα

= φt−1 − φt, (12)

where we set qw = 1− pw for all w ∈W and φt =
∏
α∈Wt

qα, and use the convention
W−1 = ∅ and φ−1 = 1.

Observe that the probability (12) does not depend on u. Hence the number of new
alive nodes at time t is, conditional on the history Ht, a Binomial distributed random
variable with parameters rt and Nt = n− t− Yt:

Zt+1|Ht ∼ Bin(Nt, rt). (13)

Now, by mathematical induction in t, it easily follows that for times t ≥ 1 the number
of alive nodes Yt satisfies:

Yt|Ht−1 ∼ Bin
(
n− 1, 1−

t−1∏
τ=0

(1− rτ )
)
− t+ 1. (14)

4.2 Expectation and variance of φt

The history Ht embodies the evolution of how the attributes are discovered over time.
It is insightful to recast that history in terms of the discovery times Γw of each attribute
in W . Given any sequence of nodes v0, v1, v2, . . ., the probability that a given attribute
w is first discovered at time t < n is

P[Γw = t] = P[Ivt,w = 1, Ivt−1,w = 0, . . . , Iv0,w = 0]

= pw(1− pw)t.

If an attribute w is not discovered by time n− 1, we set Γw =∞ and note that

P[Γw =∞] = (1− pw)n.

From the independence of the random variables Iv,w, it follows that the discovery times
{Γw : w ∈W} are mutually independent. We now focus on describing the distribution
of φt =

∏
α∈Wt

qα. For t ≥ 0, we have

φt =
∏
α∈Wt

qα =

t∏
j=0

∏
α∈Wj\Wj−1

qα
d
=

t∏
j=0

∏
w∈W

qI(Γw=j)
w =

∏
w∈W

qI(Γw≤t)
w . (15)

E[φt] =
∏
w∈W

(
1− (1− qw)(1− qt+1

w )
)
. (16)

The concentration of φ0 will be crucial for the analysis of the supercritical regime.
Hence, we provide E[φ0] and E[φ20] here. In Subsection 5.2, we will assume that pw =
p(log n/n). Under this condition, it follows from (16) that

E[φ0] =
∏
w∈W

(1− p2w) = 1−
∑
w∈W

p2w + o(
∑
w∈W

p2w). (17)
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Moreover, under the same condition, it follows from (15) that

E[φ20] = E[
∏
w∈W

q2I(Γw≤0)
w ] =

∏
w∈W

(
1− (1− q2w)P[Γw = 0]

)
=
∏
w∈W

(
1− (1− q2w)pw

)
=
∏
w∈W

(
1− 2p2w + p3w

)
= 1− 2

∑
w∈W

p2w + o(
∑
w∈W

p2w). (18)

5 Giant component

With the process {Yt}t≥0 defined in the previous section, we analyze both the sub-
critical and supercritical regime of a general random intersection graph by adapting
the percolation-based techniques used to analyze Erdős-Rényi random graphs [2]. The
technical difficulty in analyzing that stopping time rests in the fact that the distribution
of Yt depends on the history of the process, dictated by the structure of the general RIG.
In the next two subsections, we will give conditions for the absence as well as for the
existence and uniqueness of the giant component, in general RIGs.

5.1 Subcritical regime

Theorem 1. Suppose that

pw = O(1/n) for all w and
∑
w∈W

p3w = O(1/n2).

For any positive constant c < 1, if
∑
w∈W p2w = c/n, then whp2 all components in a

general random intersection graph G(n,m,p) are of order O(log n).

Proof. We generalize the techniques used in the proof for the sub-critical case in Gn,p
presented in [2]. Let T (v0) be the stopping time defined in (9), for the process starting
at node v0 and recall that T (v0)

d
= |C(v0)|. We will bound the size of the largest

component, and prove that under the conditions of the theorem, all components are of
order O(log n), whp.

For all t ≥ 0,

P[T (v0) > t] = E
[
P[T (v0) > t | Ht]

]
≤ E

[
P[Yt > 0 | Ht]

]
= E

[
P[Bin(n− 1, 1−

t−1∏
τ=0

(1− rτ )) ≥ t | Ht]

]
. (19)

Bounding from above, we have

1−
t−1∏
τ=0

(1− rτ ) ≤
t−1∑
τ=0

rτ =

t−1∑
τ=0

(φτ−1 − φτ ) = 1− φt−1, (20)

2 “With high probability,” meaning with probability 1− o(1), as the number of nodes n→∞.
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which can readily be shown by induction in t for rτ ∈ [0, 1]. By using stochastic or-
dering of the Binomial distribution, both in n and in

∑t−1
τ=0 rτ , and for any positive

constant ν < 1, which is to be specified later, it follows that

P[T (v0) > t | Ht] ≤ P[Bin(n,
t−1∑
τ=0

rτ ) ≥ t | Ht] ≤ P[Bin(n, 1− φt−1) ≥ (1− ν)t | Ht]

= P[Bin(n, 1− φt−1) ≥ t | 1− φt−1 < (1− ν)t/n ∩Ht]P[1− φt−1 < (1− ν)t/n | Ht]
+ P[Bin(n, 1− φt−1) ≥ t | 1− φt−1 ≥ (1− ν)t/n ∩Ht]P[1− φt−1 ≥ (1− ν)t/n | Ht]

≤ P[Bin(n, 1− φt−1) ≥ t | 1− φt−1 < (1− ν)t/n ∩Ht]
+P[1− φt−1 ≥ (1− ν)t/n | Ht]. (21)

Furthermore, using the fact that the event {1− φt−1 < (1− ν)t/n} isHt-measurable,
together with the stochastic ordering of the binomial distribution, we obtain

P[Bin(n, 1−φt−1) ≥ t | 1−φt−1 < (1−ν)t/n∩Ht] ≤ P[Bin(n, (1−ν)t/n) ≥ t | Ht].

Taking the expectation with respect to the historyHt in (21) yields

P[T (v0) > t] ≤ P[Bin(n, (1− ν)t/n) ≥ t] + P[1− φt−1 ≥ (1− ν)t/n].

For t = K0 log n, where K0 is a constant large enough and independent on the initial
node v0, the Chernoff bound ensures that P[Bin(n, (1− ν)t/n) ≥ t] = o(1/n), and

P{1− φt−1 ≥ (1− ν)t/n} = P

{ ∏
w∈W

qI(Γw≤t)
w ≤ 1− (1− ν)t

n

}

= P

{∑
w∈W

log

(
1

1− pw

)
I(Γw ≤ t) ≥ − log

(
1− (1− ν)t

n

)}

≤ P

{∑
w∈W

log

(
1

1− pw

)
I(Γw ≤ t) ≥

(1− ν)t
n

}
. (22)

Define the auxiliary random variables Xt,w = n log(1/(1− pw))I(Γw ≤ t), so that

E[Xt,w] = n log
( 1

1− pw

)
(1− qtw) = n

(
pw + o(pw)

)(
1− (1− pw)t

)
= n

(
pw + o(pw)

)(
tpw + o(tpw)

)
= ntp2w + o

(
ntp2w

)
, (23)

which implies ∑
w∈W

E[Xt,w] = nt
∑
w∈W

p2w
(
1 + o(1)

)
. (24)

Thus under the stated condition that

n
∑
w∈W

p2w = c < 1,
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it follows that for some constant c′, where c < c′ < 1, and for sufficiently large n,∑
w∈W E[Xt,w] ≤ c′t. In light of (22) and Bernstein’s inequality [5],

P
[
1− φt−1 ≥

(1− ν)t
n

]
≤ P

[ ∑
w∈W

Xt,w ≥ (1− ν)t
]

≤ P
[ ∑
w∈W

(
Xt,w − E[Xt,w]

)
≥ (1− ν − c′)t

]
≤ exp

{ − 3
2 ((1− ν − c

′)t)2

3
∑
w Var[Xt,w] + ntmaxw pw(1 + o(1))

}
.(25)

Since

E[X2
t,w] =

(
n log

( 1

1− pw

))2
(1− qtw) = n2

(
pw + o(pw)

)2(
1− (1− pw)t

)
= n2

(
p2w + o(p2w)

)(
tpw + o(tpw))

)
= n2tp3w + o

(
n2tp3w

)
, (26)

it follows that for some large constant K1 > 0∑
w∈W

Var[Xt,w] ≤
∑
w∈W

E[X2
t,w] = n2t

∑
w∈W

p3w + o
(
n2t

∑
w∈W

p3w

)
≤ K1t.

Finally, the assumption of the theorem implies that there exists a constant K2 > 0 such
that

nmax
w∈W

pw ≤ K2.

Substituting these bounds into (25) yields

P[1− φt−1 ≥ (1− ν)t/n] ≤ exp

(
−3(1− ν − c′)2

2(3K1 +K2)
t

)
.

Taking ν ∈ (0, 1 − c′) and t = K3 log n for some constant K3 large enough and not
depending on the initial node v0, we conclude that P[1−φt−1 ≥ (1−ν)t/n] = o(n−1),
which in turn implies that taking constant K4 = max{K0,K3}, ensures that

P[T (v0) > K4 log n] = o(1/n)

for any initial node v0. Finally, the union bound over the n possible starting values v0
gives

P[max
v0∈V

T (v0) > K4 log n] ≤ no(n−1) = o(1),

which implies that all connected components are of size O(log n), whp.

5.2 Supercritical regime

We now turn to the study of the supercritical regime in which limn→∞ n
∑
w∈W p2w =

c > 1.
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Theorem 2. Suppose that

pw = o
( log n

n

)
for all w and

∑
w∈W

p3w = o
( log n
n2

)
.

For any constant c > 1, if
∑
w∈W p2w = c/n, then whp there exists a unique largest

component in G(n,m,p), of order Θ(n). Moreover, the size of the giant component is
given by nζc(1 + o(1)), where ζc is the solution in (0, 1) of the equation 1− e−cζ = ζ,
while all other components are of size O(log n).

Remark. The conditions on pw and
∑
w p

3
w are weaker than ones in the case of the

subcritical regime.

Proof. We start by bounding 1 −
∏t−1
τ=0(1 − rτ ). The upper bound

∑t−1
τ=0 rτ has al-

ready been established in (20). For the lower bound, we apply Jensen’s inequality to the
function log(1− x) to get

log

t−1∏
τ=0

(1− rτ ) =
t−1∑
τ=0

log(1− rτ ) =
t−1∑
τ=0

log
(
1− (φτ−1 − φτ )

)
≤ t log

(
1− 1

t

t−1∑
τ=0

(φτ−1 − φτ )
)
= t log

(
1− 1− φt−1

t

)
. (27)

In light of (15), φt is decreasing in t, and hence

1−
t−1∏
τ=0

(1− rτ ) ≥ 1−
(
1− 1− φt−1

t

)t
≥ 1−

(
1− 1− φ0

t

)t
. (28)

To bound 1−
(
1− 1−φ0

t

)t
further, consider the function ft(x) = 1− (1− x/t)t for x

in a neighborhood of the origin, with t ≥ 1. For any fixed x, ft(x) decreases to 1− e−x
as t tends to infinity. The latter function is concave, and hence for all x ≤ ε,

ft(x) ≥ 1− e−x ≥ 1− e−ε

ε
x.

Focusing on 1 − φ0, from (18) and (17), by using Chebyshev’s inequality with∑
w∈W p2w = c/n, it follows that φ0 is concentrated around its mean E[φ0] = 1− c/n.

Therefore, with probability 1− o(1/n), 1− φ0 = o(1). But (1− e−ε)/ε can be made
arbitrary close to 1 by taking ε small enough, so it follows that 1−

∏t−1
τ=0(1−rτ ) > c′/n

for some constant c′ ∈ (1, c) arbitrarily close to c. Hence, the branching process on RIG
is stochastically lower bounded by Bin(n−1, c′/n). But this bound itself stochastically
dominates a branching process on Gn,c′/n. Because c′ > 1, there exists whp a giant
component of sizeΘ(n) inGn,c′/n. This implies that the stopping time of the branching
process associated to Gn,c′/n is Θ(n) with high probability, as is therefore the stopping
time Tv for some v ∈ V . Thus, whp there is a giant component in a general RIG.
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We now show that this giant component is unique and that all other components
have size O(log n). Consider the size of the giant component. From the represen-
tation (15) for φt−1, consider the previously introduced random variables Xt,w =
n log(1/(1− pw))I(Γw ≤ t). Similarly to the proof of Theorem 1, it follows that under
the conditions of the theorem there is a positive constant δ > 0 such that

∑
wXt,w

is concentrated within (1 ± δ)
∑
w E[Xt,w] = (1 ± δ)c/n, with probability 1 − o(1).

Hence, there exists p+ = c+/n, for some constant c+ > c > 1, such that 1 − φt−1 ≤
1 − (1 − p+)t, which is equivalent to − log φt−1 ≤ t log(1 − p+) = tp+ + o(tp+) =
tc+/n + o(t/n). Similarly, the concentration of φt−1 implies that there exists p− =
c−/n, with c > c− > 1, such that 1− (1− p−)t ≤ 1− (1− (1−φt−1)/t)t, which im-
plies that − log φt−1 ≥ t log(1− p−) = tp− + o(tp−) = tc−/n+ o(t/n). Combining
the upper and lower bound, we conclude that, with probability 1− o(1), the rate of the
branching process on RIG is bracketed by

1− (1− p−)t ≤ 1−
t−1∏
τ=0

(1− rτ ) ≤ 1− (1− p+)t. (29)

The stochastic dominance of the binomial distribution, together with (29), implies

P
[
Bin
(
n− 1, 1− (1− p−)t

)
≥ t
]
≤ P

[
Bin
(
n− 1, 1−

t−1∏
τ=0

(1− rτ )
)
≥ t
]

≤ P
[
Bin
(
n− 1, 1− (1− p+)t

)
≥ t
]
. (30)

In light of (29), the branching process {Yt}t≥0 associated to a RIG is stochastically
bounded from below and above by the branching processes associated with Gn,p− and
Gn,p+ , respectively [2]. Since both c−, c+ > 1, there exist giant components in both
Gn,p− and Gn,p+ , whp.

In [24], it has been shown that the giant components inGn,λ/n, for λ > 1, is unique
and of size ≈ nζλ, where ζλ is the unique solution in (0, 1) of the equation

1− e−λζ = ζ. (31)

Moreover, the size of the giant component in Gn,λ/n satisfies the central limit theorem

maxv{|C(v)}| − ζλn√
n

∼ N
(
0,

ζλ(1− ζλ)
(1− λ+ λζλ)2

)
. (32)

From the definition of the stopping time (see (19)) and given (30) and (32), there is a
giant component in a RIG of size at least nζλ(1−o(1)), whp. Furthermore, the stopping
times of the branching processes associated to Gn,p− and Gn,p+ are approximately
ζn, where ζ satisfies (31), with λ− = np− and λ+ = np+, respectively. These two
stopping times are close to one another, which follows from analyzing the function
F (ζ, c) = 1− ζ − e−cζ , where (ζ, c) is the solution of F (ζ, c) = 0, for given c. Since
all partial derivatives of F (ζ, c) are continuous and bounded, the stopping times of the
branching processes defined from Gn,p− , Gn,p+ are “close” to the solution of (31), for
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λ = c. From (30), the stopping time of a RIG is bounded by the stopping times on
Gn,p− , Gn,p+ .

For the last part of the proof of uniqueness of the giant component, we adapt the
arguments in [2] to our setting. Let us assume that there are at least two giant com-
ponents in a RIG, with the sets of nodes V1, V2 ⊂ V . Let us create a new, inde-
pendent “sprinkling” R̂IG on the top of our RIG, with the same sets of nodes and
attributes, while p̂w = pγw, for γ > 1 to be defined later. Now, our object of in-
terest is RIGnew = RIG ∪ R̂IG. Let us consider all Θ(n2) pairs {v1, v2}, where
v1 ∈ V1, v2 ∈ V2, which are independent in R̂IG, (but not in RIG), hence the prob-
ability that two nodes v1, v2 ∈ V are connected in R̂IG is given by

1−
∏
w

(1− p̂2w) = 1−
∏
w

(1− p2γw ) =
∑
w

p2γw + o(
∑
w

p2γw ), (33)

since γ > 1 and pw = O(1/n) for any w. Given that
∑
w p

2
w = c/n, we choose

γ > 1 so that
∑
w p

2γ
w = ω(1/n2). Now, by the Markov inequality, whp there is a pair

{v1, v2} such that v1 is connected to v2 in R̂IG, implying that V1, V2 are connected,
whp, forming one connected component within RIGnew. From the previous analysis, it
follows that this component is of size at least 2nζλ(1− δ) for any small constant δ > 0.
On the other hand, the probabilities pneww in RIGnew satisfy

pneww = 1−(1−pw)(1− p̂w) = pw+ p̂w(1−pw) = pw+pγw(1−pw) = pw(1+o(1)),

again since γ > 1 and pw = O(1/n) for any w. Thus,∑
w∈W

(pneww )2 =
∑
w∈W

p2w+Θ(
∑
w∈W

p1+γw (1−pw)) =
∑
w∈W

p2w(1+o(1)) = c/n+o(1/n).

(34)
Given that the stopping time on RIG is bounded by the stopping times onGn,p− ,Gn,p+ ,
and from its continuity, it follows that the giant component in RIGnew cannot be of size
2nζλ(1− δ), which is a contradiction. Thus, there is only one giant component in RIG,
of size given by nζc(1+o(1)), where ζc satisfies (31), for λ = c. Moreover, knowing the
behavior of Gn,p, from (30), it follows that all other components are of size O(log n).

6 Conclusion

The analysis of random models for bipartite graphs is important for the study of algo-
rithms on networks formed by associating nodes with shared attributes. In the random
intersection graph (RIG) model, nodes have certain attributes with fixed probabilities.
In this paper, we have considered the general RIG model, where these probabilities
are represented by a set of probabilities p = {pw : w ∈ W}, where pw denotes the
probability that a node is attached to the attribute w.

We have analyzed the evolution of components in general RIGs, giving conditions
for existence and uniqueness of the giant component. We have done so by generaliz-
ing the branching process argument used to study the birth of the giant component in
Erdős-Rényi graphs. We have considered a dependent, inhomogeneous Galton-Watson
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process, where the number of offspring follows a binomial distribution with a different
number of nodes and different rate at each step during the evolution. The analysis of
such a process is complicated by the dependence on its history, dictated by the structure
of general RIGs. We have shown that in spite of this difficulty, it is possible to give
stochastic bounds on the branching process, and that under certain conditions the giant
component appears at the threshold n

∑
w∈W p2w = 1, with probability tending to one,

as the number of nodes tends to infinity.

Acknowledgments

Part of this work was funded by the Department of Energy ASCR program, by the Air
Force Office of Scientific Research MURI grant FA9550-10-1-0569, and by the Office
of Naval Research grant N00014-10-1-0641. Nicolas W. Hengartner was supported by
DOE-LDRD 20080391ER.

References
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